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Abstract— The end-to-end driving models (E2EDMs) convert
environmental information into driving actions using a complex
transformation which makes E2EDMs have high prediction accu-
racy. Due to the black-box nature of transformation, the E2EDMs
have low explainability. To solve this problem, explanation
methods are used to generate explanations for observation. Based
on current explanation methods, previous studies tried to further
improve the explainability of E2EDMs by integrating an object
detection module, however, these methods have many problems:
Firstly, due to the requirement of the object detection module,
they lack flexibility. Secondly, they neglect an essential property,
i.e., simplicity, to improve explainability. In this paper, since
humans prefer object-level and simple explanations in driving
tasks, we argue that explainability is decided by two properties
which are the objectification degree (the extent to which driving
related-object features are utilized) and simplification degree
(the simplicity of the explanation), thus we propose Simplified
Objectification Branches (SOB) to improve the explainability of
E2EDMs. Firstly, this structure could be integrated into any
existing E2EDMs and thus have high flexibility. Secondly, the
SOB explicitly improves the simplification degree without sacri-
ficing the objectification degree of the explanations. By designing
several indicators, i.e., heatmap satisfaction, driving action repro-
duction score, deception level, etc., we proved that SOB could help
E2EDMs generate better explanations. Notably, the SOB could
also further enhance E2EDMs’ prediction accuracy.

Index Terms— Explainability, autonomous vehicles, deep learn-
ing, convolutional neural networks.

I. INTRODUCTION

AUTONOMOUS driving systems are closely related to
human safety and ensuring that these systems are reliable

is important. Specifically, if the system’s driving decisions
differ from what humans consider reasonable, humans are
entitled to request an explanation of the system’s driving
decisions. In addition, previous research has shown that there
are two indispensable components to human trust in a model:
performance-based trust and process-based trust [1]. The for-
mer corresponds to the model’s prediction accuracy, and the
latter corresponds to the model’s explainability, where previous
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research has defined explainability as the extent to which a
model’s predictions can be understood by humans [2].

The autonomous driving models can be divided into two
types [3]: modular driving models [4], [5] and end-to-end
driving models (E2EDMs) [6], [7], [8], [9]. Modular driving
models are designed based on the human driving strategy, i.e.,
the perception-planing-action pipeline, thus modular driving
models are interpretable. The definition of interpretable is that
the model’s predictions can be understood by observing the
modelitself [10], [11], [12]. However, the modular driving
models select hand-craft features that are not optimal for the
tasks [5], [9], i.e., they have the drawback of low prediction
accuracy. To make driving models that have higher prediction
accuracy, E2EDMs [6], [7], [8], [9] are developed by using a
complex transformation to convert environmental information
into driving actions. This complex transformation can learn
optimal features that fit the current task, making E2EDMs
have high prediction accuracy. However, E2EDMs have poor
explainability due to the black-box nature of the complex
transformation. Since the perception-planing-action pipeline
architecture is prone to error propagation and accumulation,
in order to make driving models that have both high prediction
accuracy and explainability, researchers tend to solve the
explainability issue of E2EDMs instead of the prediction
accuracy issue of modular driving models.

To explain E2EDMs, explanation methods are employed
to generate explanations for future observations [10], [11],
[13]. There are two fundamental properties of explanations,
persuasibility and fidelity. Persuasibility represents how well
people understand and agree with the explanations. Fidelity
represents whether the explanation can faithfully reflect the
model’s computational method. For fidelity, current expla-
nation methods can be divided into two categories [14]: 1.
Passive explanation methods, 2. Active explanation methods.
Passive explanation methods are applied after training models,
they do not intervene in the model’s architecture or training
process; instead, they analyze the model’s outputs, internal
features, and weights. On the other hand, active explanation
methods are considered during the model’s design and training
process. These methods introduce components that generate
explanations and use these explanations for computing the final
prediction, thus explanations generated by active explanation
methods are faithful. In this paper, to ensure the generated
explanations are faithful, we use active explanation methods
to explain our proposal and various baselines.

There are textual-based explanation methods [15], [16],
[17], [18] and visual-based explanations [19], [20], [21], [22],
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Fig. 1. (i) is the explanation generated by a traditional E2EDM, which suffers
from a low objectification degree (the extent to which driving-related object
features are utilized); (ii) is the explanation generated by a ROB-integrated
E2EDM [29], despite it could have a high objectification degree, it suffers
from a low simplification degree (the simplicity of the explanation), leading
to overcomplex explanations tend to confuse and deceive humans, i.e., humans
are unable to recognize the precise cause responsible for the prediction; (iii)
is the explanation generated by our proposed SOB-integrated E2EDM, which
has higher simplification and objectification degrees that could improve the
explainability of E2EDMs.

[23], [24] methods, the former generates natural language
to explain why the driving models perform a specific driv-
ing action, the latter uses visual information, i.e., images
to offer intuitive explanations. Compared to textual-based
explanations, visual-based explanations have the advantage at
time-critical tasks, such as driving, thus in this paper, we focus
on visual-based explanations. Among various visual-based
explanation methods, attribution-based methods [10], [12],
[13] are widely utilized to calculate the importance score of
each input element in the model’s prediction. As shown in
Fig. 1, the heatmaps illustrate the importance of pixels in the
prediction results, serving as explanations. In driving tasks,
these explanations are particularly suitable as they facilitate
a quick understanding of the predictions [13]. Additionally,
since the basis of human attention lies in objects [25], as shown
in Fig. 1 (i), the explanation with a low objectification degree
(the extent to which driving-related object features are utilized)
is less persuasive [19].

Therefore, the previous studies to enhance the explainability
of E2EDMs focus on improving the explanations’ objecti-
fication degree by integrating an object detection module
into the driving model [20], [21], [22], [23], [24]. This
enables the model to capture specific object elements and
generate precise object-level explanations. However, due to
the specific structural requirements of an object detection
module, this approach has limited flexibility. In addition, they
neglect the importance of simplicity in explanations, leading
to two critical issues. Firstly, prior research [26], [27], [28]
has demonstrated that complex explanations tend to confuse
humans and undermine the overall explainability of E2EDMs.
Secondly, complex explanations can also deceive humans.
As illustrated in Fig. 1 (ii), the explanation suggests that this
particular E2EDM relies on numerous elements to make pre-
dictions, which might appear convincing to humans, especially

because the most important vehicle (the one close to us on
the left) is highlighted. However, in reality, this E2EDM’s
prediction is incorrect, and the actual cause of the error (e.g.,
the vehicle far from us on the right) becomes less noticeable
as it is overshadowed by the many highlighted elements. Con-
sequently, humans are unable to recognize the precise cause
responsible for the wrong prediction, as human perception
tends to believe what they want to believe. Therefore, complex
explanations have the potential to deceive humans.

To address these problems, inspired by the Refined Objec-
tification Branch (ROB) proposed in [29], we innovatively
proposed two indicators that determine the explainability
of E2EDMs: the objectification degree and the simplifi-
cation degree. Although previous studies [21], [22], [23],
[24], [25] and we aim to improve the explainability, they
neglect to improve the simplification degree thus generating
over-complex and deceivable explanations. On the other hand,
we innovatively introduce the SOB structure, which not only
improves the objectification degree of the explanations but
also the simplification degree, as shown in Fig. 1 (iii), which
results in simpler explanations. Furthermore, the integration
of SOB into E2EDMs not only preserves prediction accuracy
but actually enhances it. Lastly, SOB can be integrated into
any type of existing E2EDMs without specific structural
requirements, thus ensuring the high flexibility of our proposal.

The contributions of this paper are:
• We proposed the SOB structure, which can be integrated

into any existing E2EDMs. The SOB enhances the objec-
tification and simplification degree of explanations.

• We performed experiments to evaluate the explainability
of E2EDMs. Based on the results, we demonstrated that
SOB could improve the explainability of E2EDMs.

II. RELATED WORK

In explainable AI (XAI), understanding the predictions of
machine learning models has a general process. First, there is
a target model that needs to be explained [30], [31], [32], [33];
then, we select an explanation method [12], [34], [35], [36];
finally, we use this explanation method to obtain explanations
[37], [38], [39], [40]. Therefore, we introduce the previous
research about 3 topics: The driving models that try to improve
the explainability, explanation methods, and the properties of
the explanations.

A. The Driving Models That Try to Improve the
Explainability

1) The Object-Based Explainability Enhancement
Approach: As introduced in the previous study of cognitive
science [25], the basis of human attention is the object.
Therefore, the previous studies integrate an object detection
module into the driving models to generate object-level
explanations, thereby making the driving models more
explainable.

Chen et al. [22] and Sauer et al. [23] introduced
human-interpretable intermediate features, such as lane cur-
vature, distance to neighboring lanes, and distance from
front-located vehicles. They first trained a convolutional neural
network to produce these features and then mapped these
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features to the steering angle. Wang et al. [20] extracted object
bounding boxes and used the object feature to predict driving
actions. In their later work [24], they further extracted 3D
object information, such as depth, rotation, and size.

However, they share the shortcomings of specific structural
requirements for the object detection module, thereby restrict-
ing their flexibility. In this paper, we solve this problem by
introducing SOB, which encourages the E2EDMs to focus on
the object feature without an object detection module.

2) The Attention-Based Explainability Enhancement
Approach: Previous studies [41], [42], [43] introduced
E2EDMs that are integrated with an attention mechanism
to enhance their explainability. However, none of the
above studies evaluated the explainability to validate the
effectiveness of their proposals. In our previous work [29],
based on the attention mechanism, we proposed a refinement
branch and performed human experiments to evaluate
explainability.

A common limitation in prior research (object-based and
attention-based) is the disregard for the simplicity of expla-
nations, which is another important property of explainability.
In this paper, we explicitly improve the simplification degree
by proposing the SOB structure, which could also be integrated
into any E2EDMs to ensure its flexibility.

B. The Explanation Methods

We first divide various explanation methods into two differ-
ent groups, the global and local explanation methods. For each
group, we then divide them into two subgroups, the active and
passive explanation methods.

1) Global Explanation Methods: In this category,
we present explanation methods that aid in comprehending
the whole decision-making process of a target model.

Global-Active Explanation Method: Previous studies [44],
[45] developed a prototype classifier by adding a prototype
layer. The network makes predictions based on the similarity
between inputs and the learned prototypes, then the network
provides prototypes as explanations.

Global-Passive Explanation Method: The primary global-
passive explanation method is mimic learning, where a deep
model is used as a teacher, and an interpretable shallow model
is used as a student. The overall process can be regarded as
a distillation process from the teacher to the student, where
the interpretable student model provides a global view of the
deep teacher model [46], [47], [48].

2) Local Explanation Methods: In this category, we present
explanation methods that aid in comprehending the individual
instance level by analyzing specific decisions.

Local-Active Explanation Methods: Local-active explana-
tion methods involve the attention mechanism, which is used
to explain specific predictions by identifying the essential
features through attention weights [49], [50], [51], [52].

Local-Passive Explanation Methods: This category is the
most commonly used for explaining deep learning models.
This method can be further categorized into three types:
gradient-based [53], [54], occlusion-based [55], and local
approximation methods [56].

Grad-CAM [54] computes a saliency map with respect to
a particular class on the last convolutional layer and can be
used to explain any convolution-based models.

Zeiler and Fergus [55] proposed an occlusion-based method,
where a gray patch is overlaid on the image, and the prediction
changes are considered as the importance of the covered area.

Ribeiro et al. proposed LIME [56] to explain any model
by local approximation. This method approximates the target
model with an interpretable model, such as logistic regression,
to provide explanations for individual predictions.

Compared to global explanation methods that aim to explain
the whole model, the local explanation methods generate
explanations for each decision, thus their explanations could
be easily understood and evaluated. Therefore, we use local
explanation methods to generate attribution-based explanations
for each prediction. For E2EDMs with attention mechanisms
(our proposal and baselines), we use the local-active explana-
tion method [50], for E2EDMs without attention mechanisms,
we use the local-passive explanation method [54].

C. Properties of the Explanations

We divide the properties of the explanations into two
categories: those describing the relationship between the
explanation and the target model, and those describing the
relationship between the explanations and humans.

The properties that describe the relationship between
the explanations and the target model

Fidelity [37] (correctness [38]): Yang et al. [37] define
fidelity as the degree to which the explanation accurately
represents the target model.

Completeness [39], [40], [57]: Cui et al. [39] define com-
pleteness as the degree to providing a complete explanation
for the model’s predictions.

The properties that describe the relationship between
the explanations and the human

Complexity [26], [27], [28]: Kulesza et al. [26] define
complexity that specifies an aspect of the explanations under-
standing process. The simpler the information from the
explainer, the easier it is to understand for the explainee.

Persuasibility (Correlation [39], Interpretability [57]):
Yang et al. [37] define persuasibility as the comprehensibil-
ity of an explanation. Despite being given different names,
whether explanations can be understood by humans has always
been a focal point of XAI research.

In simple tasks, such as object detection, where the
human-labeled truth is consistent across various user groups,
the persuasibility of an explanation can be objectively
assessed by using annotation-based evaluation methods, such
as bounding boxes and semantic segmentation [54]. However,
in complex tasks, using human annotations to evaluate per-
suasibility may not be appropriate since relevant annotations
may differ across various user groups. As a result, human-
dependent experimental evaluation is a common method for
evaluating the persuasibility of explanations in such tasks [19],
[58] [59].

Compared to simple tasks, in complex driving tasks, how to
improve the persuasibility of the explanation is more difficult
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since it may vary across various user groups. Therefore,
we propose two indicators that are valued in the human
understanding of driving tasks, which are the simplification
and objectification degrees. To explicitly enable E2EDMs to
generate persuasive explanations that have high simplification
and objectification degrees, we propose the SOB structure.

III. THE PROPOSED METHOD

In this section, we first introduce the design concept of the
SOB structure, then introduce its architecture, and finally the
implementation details for SOB-integrated E2EDMs.

A. The Design Concept of SOB Structure

For the objectification degree, as introduced in the pre-
vious study of cognitive science [25], the basis of human
attention is the object. Specifically, humans prefer object-level
explanations in driving tasks [19]. For example, when facing
a need-to-brake situation, humans prefer explanations to be
a clear driving-related object, such as a “vehicle” instead
of an undefinable “area”. Therefore, we believe generating
explanations that have a high objectification degree could
make the E2EDMs more explainable.

For the simplification degree, to calculate the simplification
degree of the explanations, we propose a method to produce
the importance of objects from the perspective of E2EDM.
Based on many previous studies [39], [40], [57], simplicity is
vital for explainability. Therefore, we could make an explana-
tion persuasive by making it simple, i.e., the important objects
that lead to the driving actions could be easily identified. In an
ideal situation, all objects could be clearly distinguished into
important objects and unimportant objects. If we constrain
the importance of objects within the range of 0 to 1, where
0 represents unimportant objects and 1 represents important
objects, the most simple explanation would be when the
importance of objects is either 0 or 1. More specifically, when
half of the objects are 0 and the other half are 1, the variance
of all objects’ importance would be maximal.

In a practical situation, we could consider the distribution
of all objects’ importance as a bi-modal distribution, which
consists of two distributions: the important objects distribution
and the unimportant objects distribution. The simple explana-
tion has a clear separation of these two distributions, i.e., the
between-class variance is maximal. As introduced in [60], the
between-class variance σ 2

B could be calculated as

σ 2
B = σ 2

T − σ 2
W , (1)

where σ 2
W and σ 2

T are the within-class variance and total
variance. By drawing on the experience of this idea, we assume
the within-class variance σ 2

W is nearly constant, then we could
separate important objects distribution from the unimportant
objects distribution by maximizing σ 2

T .
Therefore, we define the standard deviation of the objects’

importance as the simplification degree of an explanation,
which is a simple and differentiable function for trainable
E2EDMs. Generating explanations with a high simplification
degree could make the explanations more understandable,

thereby making the E2EDMs more explainable. The simplifi-
cation degree and distribution of objects’ importance will be
thoroughly introduced in the section V-B.2.

The SOB structure consists of two branches: an objec-
tification branch and a simplification branch. These two
branches are designed to make the refined feature (as shown in
Fig. 2) more object-centric and simplified. Since we apply the
attention-based explanation method to generate explanations
for SOB-integrated E2EDMs, the refined feature is not only
used to make predictions about driving actions but also to
generate explanations. In addition, the attention mechanism is
applied to the last feature layer of the network, which ensures
the attention-weighted feature is directly used for the final
driving classification. Therefore, the generated explanations
are faithful to the predictions about driving actions. Each
branch could calculate a loss to represent to which extent the
E2EDM could generate explanations that have a corresponding
degree, e.g., the objectification branch calculates objectifica-
tion loss, which represents to which extent the E2EDM could
generate explanations that have high objectification degrees.
By integrating the objectification and simplification loss from
two branches into the loss function, the E2EDM’s structure
could have a specific connection with explainability.

B. The Architecture of SOB

1) The Objectification Branch: As shown in Fig. 2,
we employ the modern semantic segmentation structure, i.e.,
the fully convolutional network (FCN) [61] as the objectifica-
tion branch to predict the area of objects (vehicles, pedestrian,
lanes, traffic lights, etc.). We integrate the FCN with the
E2EDMs’ backbone, the FCN combines feature maps with
different sizes from backbone [62] to predict object areas.
For the ground-truth mask of object areas, based on the
human annotation results, we assign pixel values of 1 to the
object area and pixel values of 0 to other areas, we define
the ground-truth mask as O224×224

all ∈ {0, 1}. By comparing
the predicted object areas with the ground-truth object mask,
we calculate the objectification loss as

LO = DC S(Oall , Ôall), (2)

which will be used in the loss function. The DC S is the
dice loss [63]. As shown in Fig. 2, Oall and Ôall are the
ground truth mask and prediction results of all objects’ areas,
respectively. Smaller LO indicate the E2EDM could generate
explanations with higher objectification degrees.

2) The Simplification Branch: The simplification branch is
designed by extending the refinement branch in [29]. In this
paper, the simplification branch computes the simplification
loss, thus the E2EDMs could generate explanations with high
simplification degrees by minimizing the simplification loss.

First, we introduce the refinement branch. As shown in
Fig 2, the E2EDMs take an image (or images) as input, and
after passing them through the backbone, we get a backbone
feature of size C × H × W (C: channel, H: height, W: width).
Then, we apply channel-wise and spatial-wise attention mech-
anisms to the backbone feature, resulting in an attention mask
of the same size [52]. Finally, we element-wisely multiply the
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Fig. 2. The architecture of a SOB-integrated E2EDM. This architecture consists of three parts: the primary model, the objectification branch, and the
simplification branch. The primary model aims to predict driving actions from multiple consecutive driving scene images, using a pretrained backbone
to extract features and an attention mechanism (CBAM [52]) to refine features. These refined features directly contribute to action prediction and serve as
explanations, ensuring faithful explanations for the predictions. The objectification branch predicts the locations of driving-related objects in the scenes,
leveraging intermediate layer features and FCN [61], the prediction loss is introduced in Eq. (2). Finally, the simplification branch aims to make explanations
easier to understand by reducing explanation complexity, measured by the standard deviation in objects’ importance scores, which is introduced in Eq. (7).

attention mask with the backbone feature to obtain the refined
feature,. The refined feature is used to predict driving actions
and calculate the simplification degree.

Next, we introduce the additional structures to make the
refinement branch upgrade to the simplification branch. First,
we sum all C channels of the refined features, which leads to
an H × W feature map. We then resize this H × W feature
map to the size of the original images to gain the pixel-level
importance map. We denote the pixel-level importance map as
P I , and we identify its important area P̃ I as:

P̃ I (x, y) =

{
1 if P I (x, y) ≥ Ti

0 otherwise,
(3)

where P I (x, y) represents the pixel value at position (x, y)

in the pixel-level importance map, Ti is the threshold value as
0.5 to determine the important and the unimportant areas.

We define the area inside each object’s bounding box as:

Mo(x, y) =

{
1 if (x, y) ∈ Bbox (o)

0 otherwise,
(4)

where Bbox (o) is the bounding box of each object, the pixel
value inside the object’s bounding box is 1, and the pixel value
outside the bounding box is 0.

Next, we calculate the intersection over union (IOU)
between P̃ I and the bounding box area of each object as each
object’s importance:

I (o) =
P̃ I (x, y) ∩ Mo(x, y)

P̃ I (x, y) ∪ Mo(x, y)
, (5)

where I (o) represents the importance score of an object.
From a human perspective, most objects are unimportant

in driving scenarios, if we directly maximize the standard
deviation of all objects’ importance, the most ideal situation
would be 50% of all objects are unimportant and 50% of all

objects all important, which is not realistic in most driving sce-
narios. Therefore, given the entire set of objects, we identify
a subset containing the least important objects. By removing
these unimportant objects, we aim to maximize the variance
within the remaining subset (potentially important objects set),
allowing us to further distinguish and separate the objects
likely to be important. Consequently, approximately half of the
potentially important objects set is deemed unimportant, while
the other half is considered important. This approach ensures
that a majority of objects are of low importance, while only a
minority are considered highly important.

We denote U to be the set of importance scores for all
objects, the SM to be the set of importance scores for M
potentially important objects in a driving environment as

SM = {I (o1), I (o2), . . . , I (oM )}, (6)

e.g., when M = 10, it signifies that SM encompasses the
importance scores of top 10 important objects. I (oi ) is the
importance of the object ranked at i-th.

The M is set to the 70% of all objects in a driving
environment. Then, we calculate the standard deviation of the
potentially important objects SM as the simplification loss

LS = −σ(SM ), (7)

which will be used in the loss function. σ is a function to
calculate the standard deviation. By minimizing this loss, the
object importance in the potentially important object set is
demanded to be more dispersed, i.e., important objects to be
more important (importance close to 1), and less important
objects to be less important (importance close to 0), thereby
finding the true important objects from the potentially impor-
tant object. Smaller LS indicates the E2EDM could generate
explanations that have higher simplification degrees.
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C. Implementation Details

In this paper, our E2EDMs take two consecutive images as
input (input size 2 × 3 × 224 × 224) and use pretrained
backbones. We train the E2EDMs for 50 epochs with a
multi-task loss function, which combines three components:
driving action loss, objectification loss, and simplification
loss. The Adam optimizer is utilized with a weight decay of
1 × 10−4 and an initial learning rate of 0.001.

The multi-task loss function is formulated as

L = λALA + λOLO + λSLS, (8)

where LA = BC E(A, Â), the A and Â denote the ground
truth label and prediction result of driving actions, respectively.
BC E is the binary cross entropy loss. λA, λO , and λS are
hyperparameters that control the relative importance of driving
action loss, objectification loss, and simplification loss, in this
paper, they are set to 1, 1, and 0.02, respectively.

IV. EXPERIMENT

A. The BDD-3AA Dataset

Previous driving datasets [6], [8] primarily focused on
designating the driver’s chosen action as the ground truth for a
driving scenario, suggesting that only that specific action was
correct. However, drivers tend to select driving actions ran-
domly from several correct options. As a result, these previous
driving datasets carried the risk of training E2EDMs with an
incomplete grasp of the full driving scenario, making them
unsuitable for comprehensive evaluations of explanations.

To address this concern, we utilized the BDD-3AA
(3 Available Actions) [19] dataset for training E2EDMs. Based
on the environment information such as surrounding vehicles,
pedestrians, lanes, and traffic lights, each driving scenario
in the BDD-3AA dataset was annotated with the availability
of three distinct driving actions: acceleration, steering left,
and steering right. Thus, we treated the driving task as
a multi-label classification problem. Among various driving
tasks, classification tasks offer convenient methods to assess
the persuasibility of explanations generated by E2EDMs.
Consequently, such classification tasks stand out as optimal
choices for evaluating explanations.

The BDD-3AA dataset comprises 500 video clips. When
presented with successive images capturing the driving sur-
roundings, the objective of the E2EDMs is to determine the
availabilities for three distinct driving actions: acceleration,
steering left, and steering right. As shown in Fig. 3, the ground
truth for this typical scene is A = [1, 1, 0]

T , 1 indicates
the corresponding driving action is available and 0 indicates
unavailable, thus A indicating that acceleration and steering
left actions are available while the steering right action is not.

To evaluate the prediction accuracy of our E2EDMs, due
to the imbalance of driving actions in the dataset, i.e., most
acceleration actions are available, while most steering left and
right actions are not available. Specifically, among 500 driving
scenes, the acceleration actions of 450 scenes are available,
the steering left actions of 175 scenes are available, and the
steering right actions of 205 scenes are available. We utilized
the macro F1 score to evaluate prediction accuracy, which

Fig. 3. Typical scene in the BDD-3AA dataset. As shown in the above
image, there is a vehicle on the right, thus the steering right action is not
available; there are vacant spaces in the front and left, thus the acceleration
and steering left actions are available. In the bottom right of this image, the
red arrow indicates the corresponding driving action is unavailable, the green
arrow indicates the corresponding driving action is available.

involved computing the average F1 score of the three actions
(acceleration, steering left, and steering right).

Macro F1 =
F1( Âa, Aa) + F1( Âl , Al) + F1( Âr , Ar )

3
, (9)

where Aa , Al , Ar are the acceleration, steering left, and
steering right actions.

B. The Experimental Persuasibility Evaluation Method

An experimental method to evaluate the persuasibility of
explanations is proposed in [19]. We gathered 5 participants
who possess driver’s licenses. Each explanation is evaluated
by at least three participants, we calculate the average value
as the final score. These experimental methods consist of two
methods: the driving action reproduction experiment and the
heatmap judgment experiment.

1) The Driving Action Reproduction Experiment: This
experiment determines whether explanations can correctly
highlight driving-related features. We only show the most
important part of an image to participants according to the
explanations, if the participants can make the same annotation
results based on this partially shown image as they would with
a complete image, it means the explanations can correctly
highlight driving-related features. We utilize the macro F1
score to measure the similarity between the annotation results
of partially shown images and complete images. A higher
score indicates more persuasive explanations.

2) The Heatmap Satisfaction Experiment: We assess the
participants’ satisfaction level with the explanations. Partic-
ipants rate the heatmap (as shown in Fig. 1) from 1 to 5, with
1 being low persuasibility and 5 being high persuasibility.

C. The Objectification and Simplification (OAS) Explanation
Evaluation Method

This method objectively evaluates the explanations gener-
ated by E2EDMs without using humans as participants. The
evaluation is divided into two indicators: the objectification
degree and the simplification degree, thus the name of the
evaluation method is OAS (objectification and simplification).
As we introduced before, the objectification degree represents
the extent to which driving-related objects are utilized; the
simplification degree represents the simplicity of the explana-
tion, i.e., the dispersity of the objects’ importance. Given that
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the human recognition system relies on objects, and simple
explanations are more comprehensible to humans, objectifica-
tion and simplification degrees determine the persuasibility of
the explanation, which is closely related to the explainability
of the E2EDMs. Therefore, we could provide a thorough
analysis of how the SOB structure improves the explainability
of E2EDMs, offering robust validation of our proposal. The
evaluation is divided into two indicators: the objectification
degree and the simplification degree.

1) The Objectification Degree:

O D =

∑
p∈Oall

L(p)∑
p L(p)

, (10)

where O D is short for Objectification Degree, L(p) represents
the luminance of a pixel in the explanations, similar to the
pixel value of P I in Fig. 2, which also is the importance
score assigned to a pixel,

∑
p∈Oall

L(p) represents the sum-
mation of all pixels’ importance scores inside the ground-truth
object mask,

∑
p L(p) represents the summation of all pixels’

importance scores in the explanations.
2) The Simplification Degree:

SD = σ(U) × 100, (11)

where the SD is short for Simplification Degree, the cal-
culation of the set of objects’ importance is the same as
Eqs. (3) ∼ (6), the differences are that the P I in Eq. (3) is
replaced by all kinds of generated attribution-based explana-
tions, which also contain the importance of each pixel, and
instead of calculating the standard deviation of potentially
important objects SM , we calculate the importance of all
objects U.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present experimental results to demon-
strate the contribution we mentioned in the introduction.

A. Validation of the SOB Could Better Improve the
Explainability and Prediction Accuracy of E2EDMs

We evaluate the explainability and prediction accuracy
of 4 E2EDMs with a ResNet-18 backbone. These 4 E2EDMs
are:

• Vanilla: the baseline E2EDM without any branch.
• RB: the E2EDM with only the refinement branch, which

is equal to the simplification branch before summing the
refined features, similar to previous studies [41], [42], the
RB is based on attention mechanism.

• ROB: the E2EDM with both the objectification branch
and the refinement branch [29].

• SOB: the E2EDM with both the objectification and sim-
plification branches.

1) The Experimental Explainability Evaluation Results:
Throughout the experiments, participants were kept unaware
of the prediction results generated by the E2EDMs. For each
driving scene, three driving actions must be considered during
the experiments. 1. Participants’ annotation results about their
judgment on the driving actions. 2. The ground truth for

Fig. 4. These 4 images represent E2EDM’s prediction results for each
driving scene (in the bottom right of each image, the red arrow indicates
the corresponding driving action is unavailable, the green arrow indicates the
corresponding driving action is available.). The heatmap is the corresponding
explanation for these predictions. In each image, the upper right number
relates to a specific situation in the Table. I, e.g., for the upper right image 1,
it is situation 1 in Table. I, the prediction is correct and the explanation is
persuasive, thus this situation indicates high explainability.

TABLE I
DETERMINE EXPLAINABILITY BASED ON THE RELATIONSHIP BETWEEN

THE CORRECTNESS OF PREDICTION RESULTS AND THE PERSUASIBILITY

OF THE EXPLANATIONS. AS SHOWN IN FIG. 4, WE FURTHER ILLUSTRATE

EACH SITUATION IN THE 2 × 2 TABLE WITH EXAMPLES, I.E., THE

E2EDMS’ PREDICTION RESULTS AND THE EXPLANATIONS

FOR THESE PREDICTIONS

driving actions used for training the E2EDMs. 3. E2EDMs’
prediction results for driving actions.

Since even for the same driving scene, humans may have
different opinions on driving actions, we must ensure partic-
ipants’ annotated driving actions match the ground truth for
E2EDMs, thus we could ensure the participants have the qual-
ifications to evaluate the explanations. Moreover, whether the
E2EDMs could correctly predict driving actions will greatly
influence the evaluation of the E2EDMs’ explainability.

We divide the relationship between the correctness of pre-
diction results and the persuasibility of the explanations into
4 situations. As shown in Table. I and Fig. 4, we introduce
each situation, and for each situation, we show an example of
E2EDM’s prediction results and explanations.
1 The E2EDM’s prediction is correct, and the explanations

are persuasive. Thus the explanations could convince people
that the computational method of E2EDM is correct, which
indicates high explainability.

2 The E2EDM’s prediction is correct, and the explanations
are non-persuasive, i.e., people are unable to comprehend
or trust that the E2EDM’s computational method is correct.
It indicates low explainability.

3 The E2EDM’s prediction is wrong, and the explanations
are persuasive, i.e., the explanations mislead people into
believing in the E2EDM’s computational method, which
indicates low explainability.
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Fig. 5. The explanations generated from 6 E2EDMs in the ablation study. Besides ROB, SOB, RB, and Vanilla, the other 2 E2EDMs are OB (the E2EDM
with only the objectification branch), and SB (the E2EDM with only the simplification branch). Based on previous research [19], to generate explanations
for the predictions of the E2EDMs, we need to visualize the high-level features that are used to predict the driving action. Therefore, reasonable explanation
results for OB and Vanilla should come from the feature maps generated by the last convolutional layer, while for E2EDMs with attention mechanisms,
explanation results should come from the refined features in Fig. 2. Therefore, for Vanilla and OB, we used Grad-CAM to generate explanations, and for
SOB, ROB, SB, and RB, we used an attention explanation method to generate explanations.

4 The E2EDM’s prediction is wrong, and the explanations are
non-persuasive, i.e., people recognize that the computational
method is incorrect, indicating high explainability.
In summary, to ensure high explainability of E2EDMs, the

persuasibility of explanations must align with the correctness
of the predictions, i.e., if the prediction is correct, then the
explanations should be persuasive; conversely, if the prediction
is wrong, then the explanation should be non-persuasive.

Therefore, to assess the explainability of the E2EDMs,
we evaluate the explanations under two different scenarios.
In the first scenario, the E2EDM’s prediction is correct,
the explanations generated by E2EDMs are expected to be
persuasive to the participants. In the second scenario, the
E2EDM’s prediction is wrong, and the explanations gener-
ated by E2EDMs are not likely to be persuasive for the
participants. Since participants were kept unaware of the
prediction results generated by the E2EDMs, participants’
assessment of the persuasibility of the explanations is solely
based on the explanations themselves. This allows us to
evaluate the extent to which the explanations deceive human
judgment.

To quantify this deceptive aspect, we introduce the deceptive
level. This level is calculated by comparing the satisfaction
scores of the generated explanations between the two afore-
mentioned conditions (1st and 2nd scenarios). The deceptive
level captures the difference in how convincing the explana-
tions are perceived by the participants, revealing the degree to
which the explanations manage to mislead human perception,

the deceptive level is calculated as

Deceptive level =
H Swrong

H Scorrect
, (12)

where H Scorrect denotes the heatmap satisfaction of the
explanations when the E2EDMs made the correct predictions.
H Swrong denotes the heatmap satisfaction of the explanations
when the E2EDMs made the wrong predictions.

When the E2EDM’s prediction is wrong, the correspond-
ing explanations should be non-persuasive, i.e., the heatmap
satisfaction should be low; when the E2EDM’s prediction is
correct, the corresponding explanations should be persuasive,
i.e., the heatmap satisfaction should be high. Therefore, a high
deceptive level indicates that no matter whether the E2EDM
makes the correct predictions, the generated explanations
always mislead people to believe the E2EDM.

As shown in the first and second rows of Table. II, when
the E2EDM’s prediction is correct, the SOB generates more
persuasive explanations than ROB, RB, and Vanilla. On the
other hand, as shown in the third row of Table. II, the deceptive
level of ROB, RB, and Vanilla is higher than SOB. This
demonstrates when these E2EDMs could not handle the driv-
ing environment, they still made the participants believe that
they could. We believe the reason is that previous E2EDMs
tend to generate overcomplicated explanations that highlight
too many objects in the images (as shown in Fig. 5), thus
misleading the participants to believe that the ROB has the
correct driving methods. Whereas the SOB focuses on fewer
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TABLE II
THE EXPERIMENTAL EVALUATION RESULTS FOR THE EXPLANATIONS

TABLE III
THE OAS EVALUATION RESULTS FOR EXPLANATIONS FROM 3 BASELINE

E2EDMS AND THEIR CORRESPONDING SOB-INTEGRATED E2EDMS

objects, thus the participants can grasp the exact cause behind
the wrong predictions and can not be misled.

2) Validation of the Effectiveness of SOB Structure Based on
the OAS Explanations Evaluation Results: To further demon-
strate the effectiveness of SOB structures, besides our previous
study [29], we integrate SOB into other baselines [43], [51].

In RB, the refinement branch is designed based on
CBAM [52], an attention-based structure that could generate
an attention mask based on backbone features. The attention
mask is applied to backbone features to produce the refined
features for the latter calculation in the simplification branch,
i.e., the main proposal in this paper. To test our proposal
in other baselines, we replace the current refinement branch
(CBAM) with other attention-based structures to generate
refined features.

Mori et al. [43] proposed an attention branch network
(ABN), and Woo et al. [51] proposed criss-cross attention
(CCnet). Similar to CBAM [52], these two structures are
both attention-based structures, they could also generate atten-
tion masks based on the backbone features, and thus they
could both serve as refinement branches. We integrate these
two structures (ABN and CCnet) into Vanilla, respectively.
We denote these two models as RB-ABN and RB-CCnet,
which as baseline models from other studies.

Similar to how we integrate SOB structures to the RB to
get SOB, we integrate the SOB structure to RB-ABN and
RB-CCnet to obtain SOB-ABN and SOB-CCnet. We use the
OAS explanation evaluation method to evaluate the explana-
tions generated by these 3 pairs of E2EDMs, each pair contains
a baseline E2EDM and its SOB-integrated E2EDM. As shown
in Table. III, no matter for which indicator (objectification
degree or simplification degree), the SOB-integrated E2EDMs
all outperform their corresponding baseline E2EDMs. There-
fore, SOB could help the E2EDMs generate more persuasive
explanations, i.e., help the E2EDMs become more explainable.

The reason behind the advantage of SOB in persuasibility
is that it considered the simplification degree of the expla-
nations. Along with the objectification degree, we believe
these two indicators together determine the persuasibility of

the explanations generated by the E2EDMs. By integrating
the simplification loss and objectification loss into the loss
function, the SOB structures can train E2EDMs’ ability to
generate explanations that have high objectification and sim-
plification degrees, as shown in Fig. 5, the explanations from
SOB tend to focus on the most important objects in the images,
leading to improved explainability. Compared to the previous
baseline (ROB), SOB utilizes more information during the
training process. Specifically, ROB uses driving action labels
and a mask representing the location information of all objects,
while SOB uses driving action labels and multiple masks, each
representing the location information of individual objects.
By knowing the location information of each object, SOB
gains an ability that ROB lacks: calculating the importance
score of each object from the model’s perspective. SOB can
use this information to more explicitly direct the model’s
focus towards the most important objects and disregard those
that are unimportant. Therefore, the stronger persuasibility of
SOB’s explanations may be attributed to its use of more label
information in training and the model’s effective structure
(simplification branch) to utilize this additional label informa-
tion. However, since the individual object location information
could be easily acquired, the high performance of SOB does
not rely on expensive annotation labels.

In this paper, our main contribution is the combination
of two simple branches: the objectification branch is a
basic semantic segmentation structure, while the simplification
branch is based on the attention module. However, the combi-
nation of these two simple structures can significantly improve
the explainability of the E2EDMs. In addition, explainability
encompasses other factors, such as fidelity, therefore, we plan
to design more advanced structures to comprehensively and
further improve the E2EDM’s explainability in future work.

3) Performance of the SOB in Other Autonomous Driving
Datasets: We showed the performance of SOB-integrated
E2EDMs on the BDD-3AA dataset. However, the driving
scenes included in the BDD-3AA dataset are not compre-
hensive enough. Therefore, we test SOB (trained on the
BDD-3AA dataset) on mainstream driving datasets. This
allows us to assess whether our proposal can handle a more
diverse range of driving scenarios, i.e., whether it can make
correct driving predictions and have high explainability.

We test SOB on nuScenes [64], Waymo [65], and Tusim-
ple [66]. These datasets are renowned in the autonomous
driving field and differ from BDD-3AA in specific aspects:
1. nuScenes includes driving environments in Singapore.
2. Waymo offers higher-resolution driving images. 3. Tusimple
focuses mainly on highway driving scenarios. As shown in
Fig. 6, for various scenes from these datasets, the SOB
makes accurate predictions across different environments and
provides persuasive explanations.

4) Performance of the SOB in Difficult Driving Scenes: In
the previous sections, we demonstrated the performance of our
E2EDMs across many datasets in terms of prediction accuracy
and high explainability. However, autonomous driving is a
complex task involving complicated driving scenarios, one of
which includes driving scenes with red traffic lights. As shown
in Fig. 7, in such scenarios, the red light is critical information
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Fig. 6. There are SOB’s predictions and explanations for 3 datasets. For
each dataset, the first row is the prediction results, the second row is the
corresponding explanations. We can see that not only the prediction results
are correct but also the explanations. The SOB could make correct prediction
results based on the right objects, such as vehicles; lanes, e.g., (2) in nuScenes,
(1) in Waymo, (1) in Tusimple; pedestrians, e.g., (3) in Waymo; traffic light,
e.g., (2) in Waymo.

Fig. 7. There are SOB’s predictions and explanations for the red traffic light
driving scenes. The left image is the prediction results, and the right one is
the corresponding explanations. We can see that not only the prediction result
is correct but the attention of the SOB is also focused on the red traffic light.

for determining driving actions. Given its small size compared
to the entire image, it is difficult for E2EDMs to utilize the
red light to make accurate predictions about driving actions.

Therefore, it is necessary to demonstrate the performance
of our proposal in such difficult driving scenarios. As shown
in Fig. 7, we can see the predictions made by our SOB for
the availability of driving actions in Fig. 7, along with the
explanations generated for these predictions. We can see that
not only are the SOB’s predictions accurate, but the SOB also
correctly utilizes the red light in making these predictions.

5) The Improvement of SOB Structure on the Predic-
tion Accuracy of E2EDMs: To assess the impact of the
SOB structure on prediction accuracy, we integrated it with
several widely-used backbones, including ResNet-18 [62],
DenseNet [67], MobileNet [68], Inception [69], and Shuf-
fleNet [70]. For each backbone, we train the SOB-integrated
E2EDMs to compare them to the respective ROB-integrated

TABLE IV
THE PREDICTION ACCURACY OF SOB, ROB, RB, AND VANILLA ON FIVE

BACKBONES

Fig. 8. To show whether there are trade-off phenomena, we show the
prediction accuracy and simplification degree of the generated explanations
about 7 E2EDMs which include the ROB, RB, Vanilla, and 4 SOBs. Since
the main proposal of this paper is the simplification branch, we adjust λS ,
i.e., the hyperparameter that controls the relative importance of simplification
loss to show whether it could lead to the trade-off phenomena. Note, the SOB
where λS = 0.02 is the main proposal in this paper.

E2EDMs, RB-integrated E2EDMs, and Vanilla E2EDMs.
As shown in Table. IV, all SOB-integrated E2EDMs exhibit
superior prediction accuracy. In summary, the multi-task train-
ing method designed to improve explainability could also help
achieve higher prediction accuracy. However, due to the imbal-
ance of driving actions in the dataset, i.e., most acceleration
actions are available, while most steering left and right actions
are not available, it will affect the prediction accuracy of
the E2EDMs. We use the prediction accuracy of our main
proposal, the SOB (ResNet-18 as backbone) as an example,
the F1-scores for three distinct driving actions: acceleration,
steering left, and steering right are 94.53%, 62.54%, 65.24%.
We could see that since in most scenes, the ground truths of
acceleration actions are available, predicting the availability of
the acceleration actions is much easier. In the future, we plan to
fix this problem by using up-sampling and down-sampling to
make a more balanced dataset or use the focal loss [71] to train
the E2EDMs to improve the prediction accuracy of steering
left actions and steering right actions.

We believe the SOB structure could improve the prediction
accuracy of any E2EDMs, in the future, we plan to use more
diverse backbones, such as vision transformers, to further
verify the effectiveness of our SOB structure.

To discuss the trade-off between explainability and predic-
tion accuracy [72], we show 7 E2EDMs’ prediction accuracy
and simplification degree of the generated explanations in
Fig. 8. The RB showed better explainability and worse predic-
tion accuracy than Vanilla. However, the ROB and SOB both
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TABLE V
THE OAS EVALUATION RESULTS FOR EXPLANATIONS

OF SOB AND SOB-L1

have better explainability and prediction accuracy. Moreover,
when the hyperparameter that controls the relative importance
of simplification loss is adjusted, there is also no solid evidence
to support the trade-off phenomenon. This observation may
be due to the nature of the driving task in the BDD-3AA
dataset. In this driving task, the prediction of the driving
actions does not require all objects in the image. Meanwhile,
the ROB and SOB excel at focusing on a small, crucial
set of objects, thus leading to both higher explainability and
prediction accuracy than the Vanilla, which lacks simplicity
in its prediction methods. We suggest that the advantage of
ROB and SOB may not hold in more complex driving tasks
where all objects in the environment are crucial. In such cases,
Vanilla’s prediction methods of considering all objects might
lead to more accurate predictions and less explainability than
the SOB and ROB, i.e., the trade-off phenomenon.

B. Ablation Studies About Model Structures and Loss
Function for Simplification Loss

1) Ablation Study About Loss Function for Simplification
Loss: As shown in Eq. (7), the simplification loss is calculated
by applying standard deviation to the potentially important
objects SM . The simplification loss serves an important role
in our SOB structures, it encourages the refined feature to
become more simplified, thus the SOB-integrated E2EDMs
could generate more persuasive explanations.

By minimizing the simplification loss calculated by standard
deviation, the object importance in the potentially important
object set is demanded to be more dispersed. However, The
L1 norm is more widely used as a shrinkage method for
feature selection [73], which could also be used to make
the objects’ importance become more dispersed. Therefore,
we replace the standard deviation with the L1-norm to calcu-
late the simplification loss, we denote this E2EDM as SOB-L1.
We evaluate the explanations of SOB-L1 and the original
SOB by the OAS explanation evaluation method. As shown in
Table. V, no matter for which indicator (objectification degree
or simplification degree), the SOB outperforms SOB-L1.

2) Ablation Study About Model Structures for Simplification
Loss: When it comes to the evaluation of explanations,
the persuasibility is too abstract and ambiguous for precise
analysis. Thanks to the OAS explanations evaluation method
that splits persuasibility into two explicit indicators, we can
thoroughly discuss the impact of the SOB structure on expla-
nations. In addition, to better analyze the effect of each branch,
we use the OAS persuasibility evaluation method to evaluate
the explanations generated by other E2EDMs as ablation
studies: the E2EDM with only the objectification branch (OB),
the E2EDM with only the simplification branch (SB).

TABLE VI
THE OBJECTIFICATION AND SIMPLIFICATION DEGREE

OF 6 E2EDMS’ EXPLANATIONS

Fig. 9. The comparison of the object important distributions of SOB and
Vanilla, showing our proposed branches could help the genuinely important
objects stand out more prominently by reducing the number of moderately
important objects and enlarging the number of unimportant objects.

First, for the objectification branch. We find that inte-
grating the objectification branch on the E2EDMs does not
always lead to an improvement in the objectification degree.
As shown in the first row of Table. VI, when we integrate
the objectification branch on the Vanilla to make it OB,
the objectification degree does not rise. However, when we
integrate the objectification branch on the SB to make it SOB,
the objectification degree rises.

We speculate on the reasons behind these results. For the
OB, the objectification branch predicts object areas by the
FCN structure. The FCN structure uses feature maps from
backbones to predict object areas, we believe the shallow
layers from the backbone have the most ability to predict
the object regions. However, when generating explanations
for OB, we only visualize the last layer of the backbone.
Therefore, a single objectification branch could not improve
the objectification degree of explanations.

However, for E2EDMs equipped with a simplification
branch, the explanations of the E2EDM are generated based
on the attention mask. By integrating the simplification branch
on the OB, the attention mechanism module could repair and
enhance the ability to extract object elements as explanations.
As a result, SOB has a better objectification degree.

The impact of the simplification branch on the simplification
degree is consistent. As shown in the second row of Table. VI,
when we add a simplification branch to the Vanilla, Vanilla
becomes SB, and the simplification degree rises. Similarly,
when we add a simplification branch to the OB, OB becomes
SOB, and the simplification degree also rises.

To help readers better understand the impact of our proposed
structure to the simplification degree, as shown in Fig. 9,
we display the distribution of object importance from the
perspective of SOB and Vanilla. For each E2EDM, based on
the generated explanations, we calculate all objects’ impor-
tance of each image from this E2EDM’s perspective. After
we combine the normalized objects’ importance of all images
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in the dataset and show them in Fig. 9, we could see the SOB
has more unimportant objects than Vanilla (object importance
0.0 ∼ 0.1), meanwhile, the SOB also has less moderately
important objects than Vanilla (object importance 0.1 ∼ 0.9),
thus the genuinely important objects (object importance
0.9 ∼ 1.0) from SOB’s perspective are easier to be distin-
guished from all objects, i.e., the SOB is more explainable.

For the impact of the objectification branch on the simpli-
fication degree. As shown in the second row of Table. VI,
when we add an objectification branch to the Vanilla, the
simplification degree does not rise. However, when we add
an objectification branch to the SB, the simplification degree
rises. In summary, a single objectification branch could not
improve the simplification degree, however, when it is com-
bined with a simplification branch, it has a positive effect on
the simplification degree.

Finally, we discuss the impact of the simplification branch
on the objectification degree. As shown in the first row of
Table. VI, after adding a simplification branch to the Vanilla,
the objectification degree rises. After adding a simplification
branch to the OB, the objectification degree rises. In summary,
the simplification branch has a consistently positive impact on
the objectification degree.

Note, that the simplification branch is an upgraded version
of the refinement branch. As shown in the first and the second
row of VI, both SB and SOB exhibit a higher degree of
simplification compared to RB and ROB, while maintain-
ing a similar degree of objectification to that of RB and
ROB, indicating the simplification branch is a more powerful
structure than the refinement branch. This is because the
simplification branch explicitly improves E2EDMs’ ability to
make simplified explanations.

VI. CONCLUSION

In this paper, we proposed the SOB, which can be integrated
into any existing E2EDMs to improve the E2EDM’s explain-
ability by making more simplified explanations, in addition,
the SOB structure could also improve the E2EDM’s prediction
accuracy. In this paper, we focused on exploring the effective-
ness of SOB structure in driving action classification tasks. For
more complex driving tasks, such as predicting steering angles,
due to the difficulty of conducting explanations evaluation
experiments for such tasks, we leave this for future work.

We also proposed the OAS explanations evaluation method
that does not rely on humans. This method enables us to quan-
titatively evaluate the E2EDM’s explanations, which can help
us better understand the impact of the different structures on
the model’s explainability. In the future, we plan to complete
this method so it could replace human experiments to evaluate
the persuasibility of the explanations.

At the end of this paper, we would like to advocate the
core idea and the outlook for future work. In the process
of machine learning development, at first, hand-craft feature
extractors are used to extract features and perform predictions.
Later, deep learning models with the autonomous search
for the best features emerged and completely outperformed
the previous methods. However, recently, many people have
begun to try to design an interpretable model (e.g., integrate

object detection module to make it no longer pure end-to-
end). This is going back to the old way and abandoning the
successful deep-learning models, we believe that the correct
logic is to determine a measure for human acceptance of the
model’s explainability (e.g., the objectification and simplifi-
cation degree), thus the model could autonomously learn a
more understandable prediction method and learn to present
its prediction method in a more understandable way.

In this paper, we showed the potential that exists in this
field. However, there is still a long way to go in this direction.
Compared with optimizing the prediction accuracy of the
model, optimizing the explainability of the model will be
influenced by more factors. There is a multitude of endeavors
that we must undertake to explore the impact of various factors
on the explainability of models, including the type of task
being addressed, the model structure, the loss function, and the
choice of explanation methods. These investigations constitute
the primary focus of our future research.
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